Building High Performance Filter

Challenges & Solutions

Robrecht Hendrikx

Market Manager for Venting & Filtration, Nitto Belgium

Host Introduction

Robrecht Hendrikx

Market Manager for Venting & Filtration, Nitto Belgium

Robrecht Hendrikx is the Market Manager for Venting & Filtration at Nitto Belgium. Robrecht has a master's in mechanical engineering and has worked in air filter/vent filter applications for over 30 years. In that time, he has developed various HEPA/ULPA air filtration systems in multiple different markets including clean rooms, respiratory equipment, appliances, transportation, and more.

Agenda

01

Design Challenges

02

TEMISH™ (ePTFE filter) as a Solution

The Nitto Group

Global Network

1918

Year Founded

28,289 Employees Worldwide

101 Companies worldwide

\$6.9

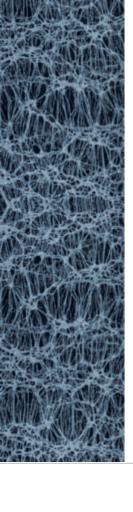
Revenue (Billion USD)

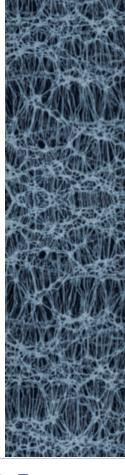
13,500

Products

70Markets

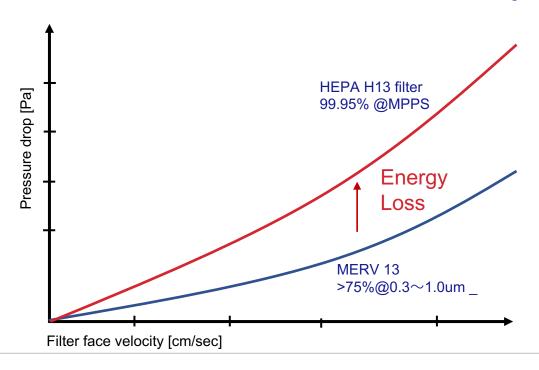
11,200
Patent Families
Granted or in


Progress


Listed on the Tokyo Stock Exchange Market

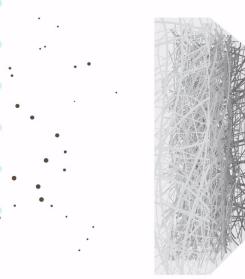
Design Challenges

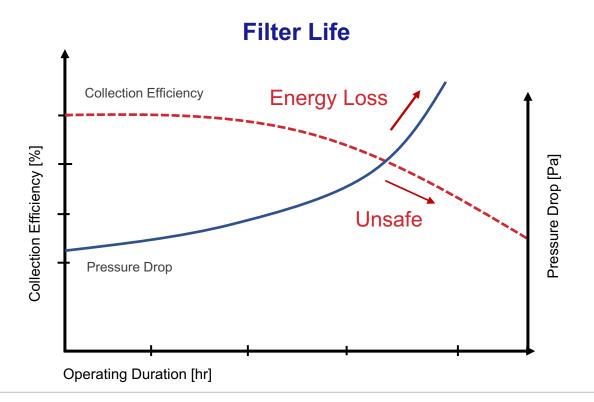
The Challenge in Improving Air Quality



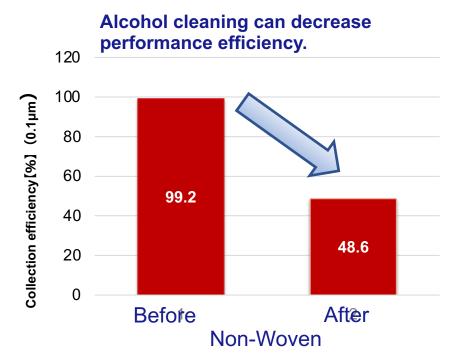
Customers' heightened awareness of air quality has increased demand for highperformance long-lasting filters. The need to create higher quality filters, or even retrofit existing systems for improved air purification, is creating new challenges for engineers needing to meet more difficult specifications.

Balancing Collection Efficiency & Pressure Drop


Trade Off: Air Flow & Collection Efficiency


Filter Size/Pressure Drop

Traditional media requires more surface area to achieve pressure drop. The current industry trend is media with a smaller profile as to design smaller devices.



Longevity – Electret Charge

Longevity – Reusability

*Filter sprayed with IPA 75%

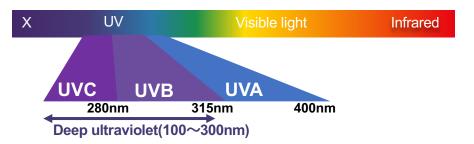
Water/humidity can decrease performance efficiency.

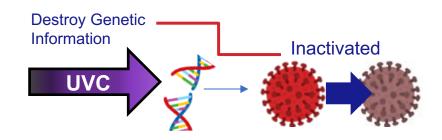
*Immerse in detergent water \rightarrow rinse with water \rightarrow Dehydration for total 15min. Dry in the sun for 8hrs.

Decreased Performance Over Time

Non-Woven

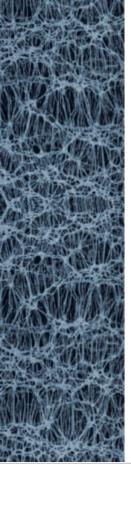
Deterioration Over Time



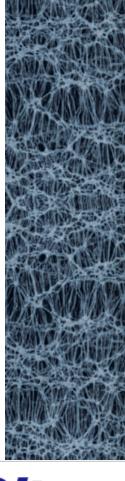

Challenge with UVC Light

UVC light can inactivate viruses, so filter media needs UV resistance.

UV Sterilization Mechanism

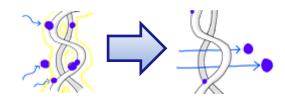


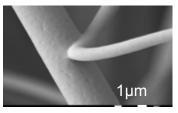
UVC irradiation destroys the genetic information of viruses and bacteria and prevents them from multiplying (inactivation).



Most media disintegrate under UVC light.

TEMISHTM Solutions

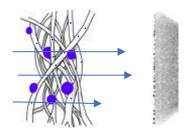


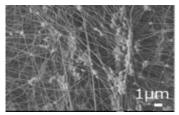

Media Collection Principles

Non-Woven*

An attraction force by charged fiber

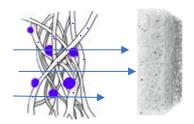
A decrease in collection capacity when charge is lost.

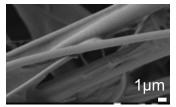




Fiber diameter 2.0~5.0µm *A charged fiber

A collision of particles into fiber Collection of fine particles Lasting collection capacity



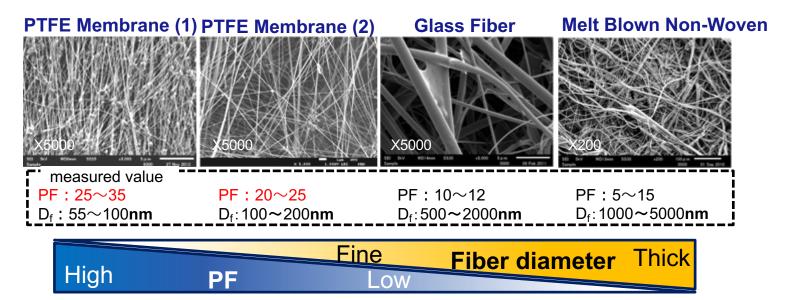


TEMISH™Enlarged view Fiber diameter 0.05~0.1µm

Glass Fiber

A collision of particles into fiber Collection of fine particles by layer thickness

Fiber diameter 0.5~2.0µm



Fiber Diameter and PF Value

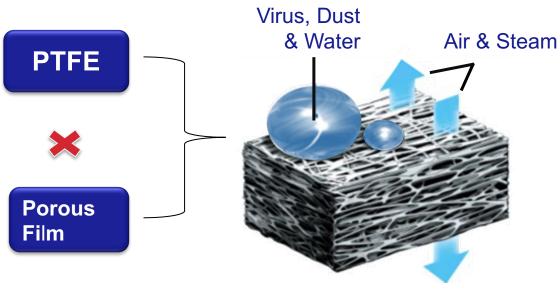
PF Value: Index representing the filter performance

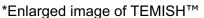
$$PF = \frac{-Log(penetration)}{Pressure drop [mmH20]} \times 100$$

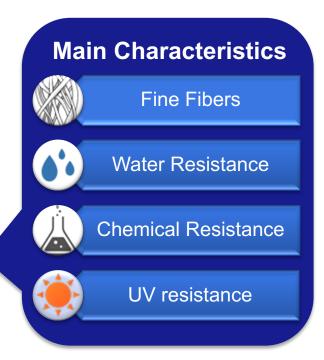
High PF ⇒ High Performance Lower Pressure Drop Higher Collection Efficiency

Media Performance

Media Type	Collection Principle	Initial Collection Efficiency	Initial Pressure Drop	Filter Thickness	Longevity - Efficiency	Longevity – Pressure Drop	UV resistance
NonWoven (PP/PE)	Charged Fiber	++	+++	Moderate	+	++	+
Glass	Depth filtration	+++	+	Thicker	+++	+++	+++
TEMISH PTFE	Micro Porous Structure	+++	++	Thinner	+++	++	+++

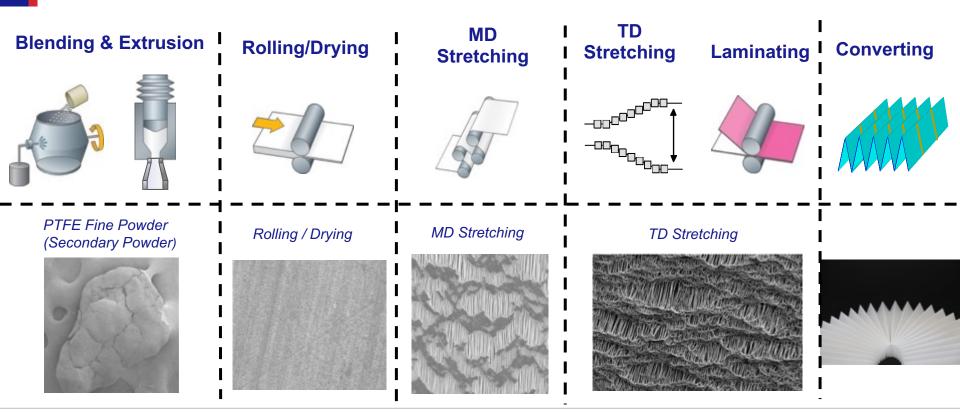






What is TEMISH™?

Allows air to pass through but not water.



TEMISHTM Manufacturing Process

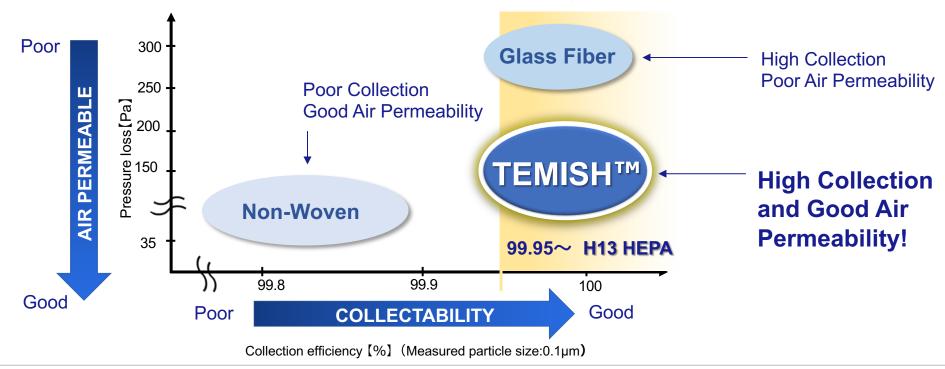
Balanced Collection Efficiency & Pressure Drop

Highly Balanced Performance

High collection and low pressure loss

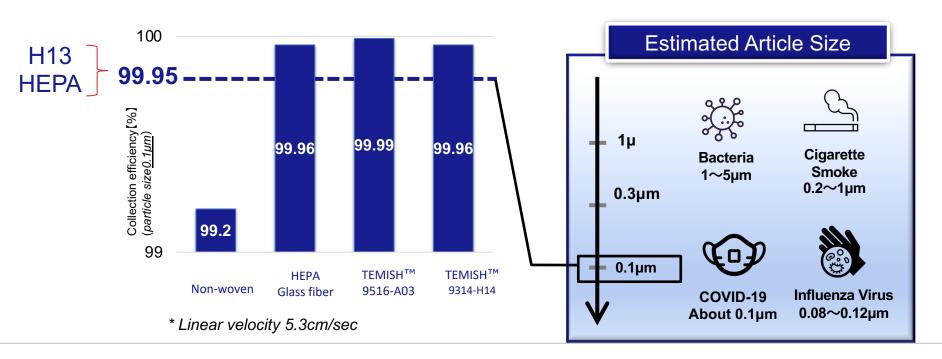
Achieves both high collection and long-lasting performance with ePTFE filter characteristics.

Performance Sustainability



Maintains performance without losing efficiency

Highly Balanced Performance


Excellent balance between collection efficiency and pressure loss.

Highly Balanced Performance (Collection Efficiency)

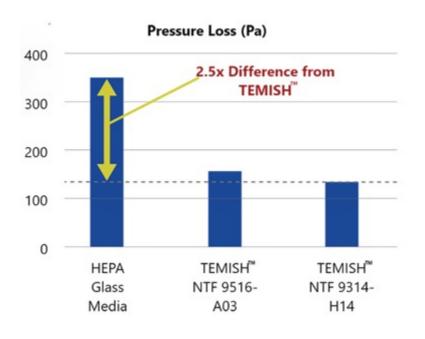
TEMISH ™ collects viruses in minutes.

Filter Size/Pressure Drop

Glass Media Internal Filtering Style

Thickness = $300 \sim 500 \mu m$ Fiber diameter = $2 \mu m$

TEMISH™ / PTFE Media Surface Filtering Style


- → 2X more Air Permeable
- → Low Impurity-Dust release
- → High Mechanical Strength
- → Chemical/ Moisture Resistance

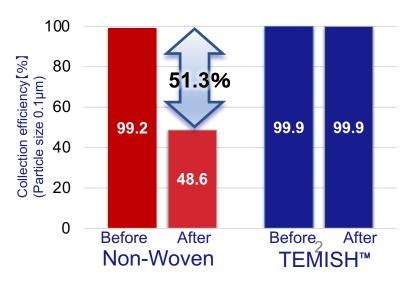
Thickness = $10\mu m$ Fiber diameter $< 0.2\mu m$

Highly Balanced Performance (Pressure Loss)

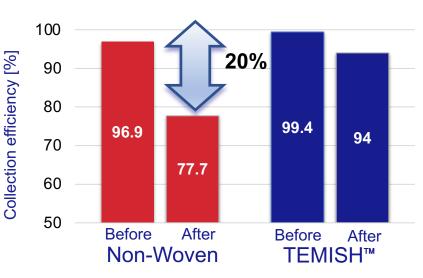
More Air Permeable than Glass Fiber

Benefits Of Low-Pressure Loss

- ✓ Miniaturization of fan/filter size
- ✓ Increased in volume
- ✓ Quietness


<u>Low Pressure Loss = Improved Performance</u>

Longevity – Reusability


TEMISH ™ maintains performance after deterioration

Filter sprayed with alcohol*

*IPA 75%

Filter washed with water & detergent*

*Immerse in detergent water \rightarrow rinse with water \rightarrow Dehydration for total 15min. Dry in the sun for 8hrs.

Maintains Performance Over Time

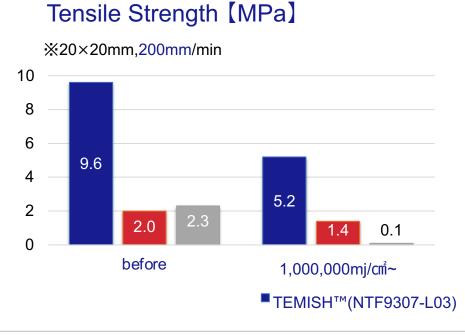
TEMISH™ UVC-resistant Irradiation Experiment

Test wavelength: 254nm(High bactericidal effect even in UV)

Test Results

UVC Irradiation an	10,000	100,000	1,000,000			
Estimated number [days]	50	500	5,000			
TEMISH™	Collection efficiency	Good				
(NTF9307-L03)	Strength	Good				
HEPA glass filter	Collection efficiency	Good				
inality glass into	Strength	Moderate				
Non-woven	Collection efficiency	Good		Fail (tear)		
	Strength	Good		Fail (tear)		

C-F Bond Very stable chemically. The strongest bond among organic bonds.



^{*200}mJ/cm2 /day(Irradiation required for inactivation:10mJ/cm2 Number of irradiations per day: 20 times/day)

TEMISH™ UVC-resistant irradiation

Maintains strength and performance as a filter even after UVC irradiation.

Summary

Consider your filtration requirements to find the best filter type for your application.

Media Type	Collection Principle	Initial Collection Efficiency	Initial Pressure Drop	Filter Thickness	Longevity - Efficiency	Longevity – Pressure Drop	UV Resistance
Nonwoven (PP/PE)	Charged Fiber	++	+++	Moderate	+	++	+
Glass	Depth Filtration	+++	+	Thicker	+++	+++	+++
TEMISH PTFE	Micro Porous Structure	+++	++	Thinner	+++	++	+++

- Balance between collection efficiency & pressure drop
- Filter size
- Longevity
- Reusability

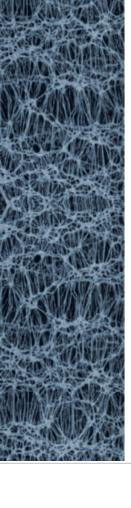
- Reusability
- Performance over time
- UVC Exposure

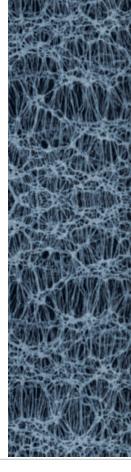
Nitto Technical Support

Nitto offers FREE technical support and evaluation for filtration applications.

We can help:

- Find the best product from our wide product line-up
- Provide high quality products
- R&D and Testing expertise
- Find solutions to problems based on market proven experience


Support.Us@nitto.com



Please Visit our Website www.nitto.com

Thank you for your attention

